RESEARCH ARTICLE

Synthesis of The Cu(II)-doped TiO₂/Bi₂O₃ as a Photocatalyst for Rhodamin B Degradation Under Visible Light Ilumination

(Sintesis Cu(II)-TiO₂/Bi₂O₃ Sebagai Fotokatalis untuk Degradasi Rhodamin B Dibawah Iluminasi Sinar Tampak)

Anthoni Batahan Aritonang^{*)}, Al Asma, Ajuk Sapar

Jurusan Kimia, Fakultas MIPA, Universitas Tanjungpura, Jln. Prof. Dr. H. Hadari Nawawi, Pontianak, 78124 Kalimantan Barat, Indonesia

ABSTRACT

The Cu(II)-doped TiO₂ and Cu(II)-doped TiO₂ /Bi₂O₃ compound have been synthesized using the sol gel method with titanium tetraisopropoxide (ITIP) as the TiO₂ precursor and Cu(NO₃)₂.3H₂O as the Cu(II) dopant was carried out at various concentration of 0.075%; 0.250% and 1.000%, as well as Bi(NO₃)₃.5H₂O as a Bi₂O₃ precursor. Based on characterization using the DRSUV-Vis spectrophotometric method with data analysis using a tauch plot, it is known that the band gap energy of Cu(II)-doped TiO₂ is 2.89 eV; 2.72 eV; 2.54 eV. The addition of Bi₂O₃ to Cu(II)-doped TiO₂ (1%) causes a decrease in the band gap from 2.54 to 2.18 eV which is equivalent to a wavelength of 567 nm. IR spectrophotometry spectra analysis shows a shift in Ti-O absorption towards smaller wave numbers. Characterization by the XRD method shows that 1% Cu(II)-doped TiO₂ /Bi₂O₃ has an anatase phase with a crystallite size of 24 nm. Photocatalysis activity test on the degradation of rhodamine B solution at a concentration of 10 ppm, under visible light illumination for 180 minutes was able to degrade up to 85.85%.

Material Cu(II)-doped TiO₂ dan Cu(II)-doped TiO₂ /Bi₂O₃ telah disintesis menggunakan metode sol gel dengan titanium tetraisopropoksida (TTIP) sebagai prekursor TiO₂ dan Cu(NO₃)₂.3H₂O sebagai dopan Cu(II) pada rasio konsentrasi Cu(II): TiO₂ bervariasi 0,075%; 0,25% dan 1%, serta Bi(NO₃)₃.5H₂O sebagai prekursor Bi₂O₃. Berdasarkan karakterisasi menggunakan metode spektrofotometri DRSUV-Vis dengan analisa data menggunakan *tauch plot* diketahui energi band gap Cu(II)-doped TiO₂ berturut-turut 2,89 eV; 2,72 eV; 2,54 eV. Penambahan Bi₂O₃ pada Cu(II)-doped TiO₂ (1%) menyebabkan penurunan band gap menjadi 2,18 eV yang setara dengan panjang gelombang 567 nm. Analisa spektra spektrofotometri IR menunjukkan terjadinya pergeseran serapan Ti-O ke arah bilangan gelombang yang lebih kecil. Karakterisasi metode XRD menunjukkan bahwa 1% Cu(II)-doped TiO₂ /Bi₂O₃ memiliki fase *anatase* dengan ukuran kristal 24 nm. Uji aktivitas fotokatalisis terhadap degradasi larutan rodamin B pada konsentrasi 10 ppm, dibawah iluminasi sinar tampak selama 180 menit mampu mendegradasi hingga 85,85%.

Keywords: Cu(II)-doped TiO₂ /Bi₂O₃, Photocatalysis, Sol gel, Rhodamine B.

^{°)}Corresponding author: Anthoni Batahan Aritonang E-mail: anthoni.b.aritonang@chemistry.untan.ac.id

PENDAHULUAN

Salah satu limbah yang menjadi permasalahan di lingkungan saat ini adalah rhodamin B. Rhodamin B merupakan zat warna yang sering digunakan dalam industri tekstil. Rhodamin B yang terbuang sebagai limbah membahayakan bagi kehidupan manusia karena dapat menimbulkan berbagai penyakit seperti kanker hati, kerusakan ginjal, iritasi apabila terkena mata dan kulit, dan lain-lain. Hal tersebut karena zat warna rhodamin B memiliki senyawa organik yang sulit terurai, bersifat karsinogenik sehingga dalam konsentrasi kecil dapat membahayakan [1]. Upaya untuk meminimalisir dampak yang ditimbulkan oleh zat warna rhodamin B perlu dilakukan cara mendegradasinya menjadi molekul yang kurang berbahaya.

Titanium dioksida (TiO₂) merupakan material semikonduktor yang efektif digunakan sebagai fotokatalis sehingga bermanfaat dalam menguraikan berbagai jenis kontaminan yang ada di lingkungan seperti senyawa organik, bakteri, dan virus [2]. Aktivitas fotokatalis TiO₂ aktif apabila terkena paparan cahaya yang memiliki tingkat energi sama atau lebih tinggi dari pada energi celah pita TiO₂. Spesi radikal (OH·) yang terbentuk di permukaan TiO₂ pada proses fotokatalisis dimanfaatkan dalam mendegradasi molekul-molekul yang berbahaya pada zat warna rhodamin B sehingga menjadi molekul yang kurang berbahaya seperti CO₂ dan H₂O [3]. Hal ini karena TiO₂ memiliki fotoaktivitas tinggi, stabil secara termal maupun kimia, harganya yang murah dan tidak toksik.

Namun, TiO₂ juga memiliki keterbatasan. Keterbatasan TiO₂ terletak pada energi celah pita yang lebar yaitu 3,0-3,2 eV, yang setara dengan panjang gelombang sinar UV (<400 nm) yang membatasi aplikasinya [4]. Maka, untuk mengatasi keterbatasan material TiO₂ dilakukan modifikasi TiO₂ dengan dopan logam Cu²⁺ yang bertujuan untuk menggeser daerah serapan TiO₂ ke daerah sinar tampak dengan cara menurunkan energi celah pita melalui doping kation logam. Kation Cu²⁺ memiliki ukuran jari-jari ionik sebesar 0,73 Å yang tidak jauh berbeda kation Ti⁴⁺ yaitu sebesar 0,68 Å sehingga mampu mensubstitusi beberapa ion Ti⁴⁺ dalam kisi TiO₂ [5].

sintesis Cu(II)-doped TiO₂ memiliki Hasil keterbatasan dalam kemampuan aktivitas proses fotodegradasi karena mempercepat laju rekombinasi pasangan e⁻ dan h⁻ [6], [7]. Hal tersebut dapat dicegah dengan menggabungkan Cu (II)-TiO2 dengan material semikonduktor yang memiliki celah pita sempit seperti Bi₂O₃ dengan band gap 2,8 eV [1]. Bi₂O₃ berperan sebagai penyedia photohole untuk menangkap elektron pada pita valensi TiO2, sehingga photohole yang ada di pita valensi TiO2 tidak dapat berekombinasi dengan elektron dan pada akhirnya dapat memproduksi radikal hidroksil banyak (OH^{-}) yang dapat mendegradasi molekul yang berbahaya pada zat warna rhodamin B. Penggabungan material tersebut dapat menambah luas permukaan dari TiO2 sebagai fotokatalis dan meningkatkan aktivitas fotokatalisnya sehingga semakin banyak polutan organik yang terdegradasi oleh fotokatalis [5], [8].

Penelitian sebelumnya [9], [10], telah mensintesis Cu(II)-TiO₂/Bi₂O₃ sebagai fotokatalis untuk mendegradasi zat warna merah (*red azo dye*) 16 dengan bantuan sinar tampak. Penambahan dopan (kation logam) Cu(II) pada TiO₂ dan menggabungkkannya dengan material Bi₂O₃ menyebabkan band gap TiO₂ menjadi kecil sebesar 2,7 eV yang setara dengan panjang gelombang sinar tampak 460 nm dan memiliki aktivitas degradasi yang tinggi.

Pada penelitian ini, disintesis Cu(II)-TiO₂/Bi₂O₃ dengan metode sol gel. Metode sol-gel dipilih karena tingkat kemudahannya dalam mengontrol ukuran

partikel, dapat dilakukan pada temperatur rendah menghasilkan untuk partikel nano dan Material homogenitasnya tinggi [11]. Cu(II)-TiO₂/Bi₂O₃ yang didapatkan kemudian dikarakterisasi menggunakan DRS UV-VIS (Diffused Reflectance Spectroscopy UV-Vis), FTIR (Fourier Transform Infrared Spectrometer), dan XRD (X-Ray Diffraction). Aktivitas fotokatalisis Cu(II)-TiO₂/Bi₂O₃ diuji terhadap degradasi Rhodamin B dibawah iluminasi sinar tampak.

METODE

Bahan dan Alat

Bahan yang digunakan dalam penelitian ini adalah yaitu asetil aseton ($C_5H_8O_2$) p.a 99,9% Sigma Aldrich, asam asetat (CH_3COOH) p.a 100,0% (Merck), asam nitrat (HNO_3) p.a Merck, bismuth(III) nitrat ($Bi(NO_3)_3.5H_2O$) p.a Merck, etanol (C_2H_5OH) p.a 97% Merck, titanium tetraisopropoksida p.a ($C_{12}H_{28}O_4Ti$) 97% Sigma Aldrich, tembaga(II) nitrat ($Cu(NO_3)_2.5H_2O$) p.a Merck, rhodamin B ($C_{28}H_{31}N_2O_3Cl$) 99,5% Merck dan akuades (H_2O).

Alat yang digunakan meliputi seperangkat alat gelas, perangkat refluks, magnetic stirrer, sonikator, reaktor fotokatalisis dilengkapi 2 buah lampu *Light Emiting Diode* (LED *flood light* 20 W Watt BE-6205), Spektrofotometer UV-Vis (Shimadzu UV- 1280), UV-Vis DRS (Agilent Cary 60), FT-IR (Shimadzu IR Prestige 21), dan XRD (Philips, X-Ray 40 kv).

Sintesis Sol Ti(OH)_n

Sol Ti(OH)_n dipreparasi dari prekursor titanium tetraisopropoksida (TTIP) dengan metode sol gel yang merujuk pada penelitian [12]. Sol ini dibuat dengan mencampurkan larutan A dan B. Larutan A terdiri dari 2 mL asam asetat dan 2 mL akuades, setelah itu dicampurkan secara bersamaan ke dalam 26,5 mL etanol sambil diaduk menggunakan sambil diaduk menggunakan magnetik stirer. Larutan B terdiri dari 7,5 mL TTIP yang dilarutkan menggunakan 26,5 mL etanol dalam labu refluks, kemudian diaduk dan ditambahkan 1 mL asetil aseton. Larutan A diteteskan secara perlahan ke dalam larutan B dalam perangkat refluks sambil diaduk pada suhu 55°C selama 2 jam. Larutan didiamkan selama 10 menit hingga didapatkan sol Ti(OH)_n.

Sintesis Cu(II)-TiO₂

Sintesis Cu(II)-TiO₂ dilakukan dengan mengacu metode Barahimi dengan sedikit modifikasi [10]. Sebanyak 0,5 gram Cu(NO₃)₂.3H₂O dilarutkan dengan 5 mL etanol dan diaduk selama 1 jam, kemudian larutan tersebut ditambahkan secara perlahan ke dalam campuran sol Ti(OH)n yang telah disiapkan. Proses refluks dilakukan selama 2 jam dan diatur pada suhu 55°C. Banyaknya Cu(NO₃)₂.3H₂O dibuat dengan variasi konsentrasi 0,075%; 0,25%; 1%; (b/v) dari volume sol TiO₂, selanjutnya diperoleh sol Cu(II)/Ti(OH)n.

Sintesis Cu(II)-TiO₂/Bi₂O₃

Sintesis Cu(II)-TiO₂/Bi₂O₃ dilakukan dengan memodifikasi penelitian dari [10]. Sol ini dibuat dengan mencampurkan larutan A dan B. Larutan A terdiri dari sejumlah Bi(NO3)3.5H2O yang dilarutkan dengan etanol dan asam nitrat hingga larut. Banyaknya prekursor Bi(NO₃)₃.5H₂O yang dicampurkan yaitu 0,655 gram. Larutan B terdiri dari sol Cu(II)-Ti(OH)_n yang telah disiapkan. Selanjutnya larutan A ditambahkan perlahan ke larutan B (tetes demi tetes). Proses refluks dilakukan selama 2 jam dan diatur pada suhu 55°C, kemudian dilakukan proses sonikasi selama 20 menit untuk homogenisasi. Campuran larutan didiamkan hingga diperoleh sol Cu(II)-Ti(OH)_n/Bi₂O₃. Sol yang diperoleh didiamkan pada suhu ruang hingga membentuk gel. Gel yang diperoleh kemudian dioven pada suhu 80°C selama 3 jam. Serbuk yang terbentuk dikalsinasi pada suhu 450°C selama 3 jam.

Karakterisasi TiO_2 , Cu(II)- TiO_2 , Cu(II)- TiO_2/Bi_2O_3

Karakterisasi menggunakan DRS UV-Vis (*Diffused Reflectance Spectroscopy* UV-Vis) dilakukan untuk mengetahui energi *band gap* semikonduktor dari masing-masing sampel. Karakterisasi menggunakan FTIR (*Fourier Transform Infrared*) untuk mengetahui gugus fungsi pada sampel yang akan menjadi bukti keberhasilan sintesis. Karakterisasi menggunakan XRD (*X-ray Diffractions*) untuk menentukan struktur kristal Cu(II)-doped TiO₂/Bi₂O₃.

Uji Aktivitas terhadap Degradasi Rodamin B

Uji aktivitas terhadap degradasi larutan rhodamin B dilakukan pada sampel TiO₂; Cu(II)-TiO₂, dan Cu(II)-TiO₂/Bi₂O₃. Reaktor fotokatalisis yang berisi 0,03 gram katalis dan 30 mL larutan rhodamin B (konsentrasi 10 ppm) diiluminasi dengan sinar tampak sambil diaduk selama 3 jam. Pada interval waktu tertentu (0, 20, 40, 60, 80, 100, 120, 140, 160, dan 180 menit), suspensi diambil dan disentrifuse untuk memisahkan katalis dan larutan uji. Selanjutnya diukur absorbansinya pada panjang gelombang maksimum (λ_{maks}) menggunakan spektrofotometer UV-Vis. Uji aktivitas terhadap rhodamine B mengacu pada prosedur yang telah dilakukan oleh Pratiwi et al [13]. Persentase rhodamin B yang terdegradasi dihitung menggunakan Persamaan 1 [14].

% degradasi=
$$\frac{\text{Co-Ct}}{\text{Co}} \ge 100\%$$
(1)

Dimana Co adalah konsentrasi awal rodamin B dan Ct adalah konsentrasi akhir rodamin B.

HASIL DAN PEMBAHASAN

Sintesis Cu(II)-TiO₂

Sintesis Cu(II)-TiO₂ telah dilakukan menggunakan metode sol gel. Prekursor TTIP digunakan sebagai sumber TiO2 yang dilarutkan didalam etanol dan terhidrolisis oleh akuades dengan bantuan katalis asam asetat. Penambahan asetilaseton sebagai agen pengkelat mencegah terjadinya aglomerasi akibat dari sifat larutan TTIP yang bersifat higroskopis [18]. Sintesis menghasilkan sol Ti(OH)_n berwarna putih susu. Padatan Cu(NO3)3·3H2O sebagai prekursor dopan Cu²⁺ dengan variasi konsentrasi sebesar 0,075%; 0,25%; dan 1% yang dilarutkan dengan etanol dan diaduk 1 jam. Proses pendopingan menyebabkan perubahan warna pada sol berwarna biru mengindikasikan dopan Cu2+ telah masuk ke dalam struktur TiO2. Semakin tinggi konsentrasi dopan Cu(II) yang ditambahkan maka semakin pekat warna biru yang dihasilkan [15].

Proses doping melewati proses hidrolisis dan kondensasi hingga menghasilkan sol Cu(II)-Ti(OH)_n. Cu(II)-Ti(OH)_n mengalami Sol proses aging (pematangan) selama ±4 hari untuk membentuk gel yang matang dan kaku. Gel Cu(II)-Ti(OH), yang terbentuk kemudian dilakukan pemanasan menggunakan oven pada suhu ±80°C selama 3 jam hingga terbentuk Cu(II)-Ti(OH)n amorf. Selanjutnya padatan Cu(II)-Ti(OH)n dikalsinasi pada suhu 450°C selama 3 jam [15]. Hasil kalsinasi Cu(II)-TiO2 dapat dilihat pada Gambar 1.

Gambar 1. Cu(II)-TiO₂:(a) 0,075%;(b) 0,25% (c) 1% dan (d) Cu(II)-dopedTiO₂/Bi₂O₃

Sol Cu(II)-Ti(OH)_n yang diperoleh dilanjutkan dengan menambahkan material bismut oksida dengan Bi(NO₃)₃.5H₂O sebagai prekursor yang bertujuan untuk meningkatkan aktivitas fotokatalisis. Prekursor Bi(NO₃)₃.5H₂O dilarutkan dengan penambahan etanol dan beberapa tetes asam nitrat hingga larut. Hal ini dilakukan untuk mendapatkan kelarutan yang baik [16]. Banyaknya Bi(NO₃)₃.5H₂O yang digunakan adalah 1% dari volume sol Ti(OH)_n [17]. Sol yang dihasilkan dengan penambahan Bi(NO₃)₃.5H₂O berubah menjadi warna biru yang lebih muda akibat penambahan Bi(NO₃)₃.5H₂O. Selanjutnya proses ini dilakukan sonikasi yang bertujuan untuk membuat dispersi menjadi lebih halus serta agar prekursor Bi(NO₃)₃.5H₂O bisa kontak dengan sol Cu(II)-Ti(OH)_n [18]. Sol Cu(II)-Ti(OH)_n/Bi₂O₃ mengalami proses aging (pematangan) selama 2 hari membentuk gel yang kuat dan matang. Gel Cu(II)-Ti(OH)_n/Bi₂O₃ yang terbentuk kemudian dikeringkan menggunakan oven pada suhu \pm 80°C selama 3 jam hingga terbentuk padatan amorf Cu(II)-Ti(OH)_n/Bi₂O₃. Padatan Cu(II)-Ti(OH)_n/Bi₂O₃ dikalsinasi pada suhu 450°C diharapkan akan menghasilkan kristal dengan fasa anatase yang memiliki luas permukaan yang besar [19].

Fourier Transform Infrared (FTIR)

Karakterisasi FTIR bertujuan untuk mengetahui gugus fungsi dan ikatan antara logam-oksida di dalam material TiO₂ hasil sintesis. Karakterisasi FTIR menggunakan spektroskopi inframerah pada rentang bilangan gelombang 4000-400 cm⁻¹. Hasil karakterisasi menggunakan FTIR dari TiO₂, 1% Cu(II)-TiO₂, dan 1% Cu(II)-TiO₂/Bi₂O₃ ditampilkan pada Gambar 2. Spektra FT-IR dari TiO₂ menunjukkan adanya serapan pada bilangan gelombang 696 cm⁻¹ yang merupakan karakteristik dari vibrasi Ti-O. Hal ini sesuai dengan penelitian [20] menyatakan bahwa pada bilangan gelombang 450-600 cm⁻¹ merupakan vibrasi Ti-O yang mengindikasikan terbentuknya TiO₂. Spektra TiO₂

menunjukkan adanya juga serapan bilangan gelombang 3446 cm⁻¹ yang merupakan karakteristik dari vibrasi ulur O-H dan 1635 cm⁻¹ yang merupakan karakteristik dari vibrasi tekuk O-H. Berdasarkan penelitian oleh [8] [21] yang menyatakan pada rentang bilangan gelombang 3150-3750 cm⁻¹ merupakan karakteristik dari vibrasi ulur O-H yang terbentuk karena adannya penyerapan molekul air dan pada rentang bilangan gelombang 2000-1600 cm⁻¹ menunjukkan vibrasi tekuk O-H.

Gambar 2. Spektra FTIR (a) TiO₂, (b) 1% Cu(II)-TiO₂ (c), 1% Cu(II)-TiO₂/Bi₂O₃

Spektra FTIR fotokatalis 1% Cu(II)-TiO₂ terdapat serapan dibilangan gelombang 472 cm⁻¹, 1620 cm⁻¹, 3446 cm⁻¹ yang dapat dilihat pada Gambar 4 (b). Puncak serapan baru yang muncul terdapat pada bilangan gelombang 810 cm⁻¹ yang merupakan vibrasi dari Cu-O-Ti. Penambahan dopan Cu(II) pada struktur TiO₂ mengakibatkan pergeseran daerah serapan dari vibrasi Ti-O ke arah bilangan gelombang yang lebih rendah dibandingkan dengan spektra FTIR TiO₂. Hal ini menunjukkan bahwa pergeseran dari serapan vibrasi Ti-O mengindikasikan bahwa dopan Cu(II) telah berhasil masuk ke dalam struktur TiO₂ artinya energi yang dibutuhkan gugus fungsi pada Cu(II)-TiO₂ untuk bervibrasi makin kecil [22].

Spektra FT-IR 1%Cu(II)-TiO₂/Bi₂O₃ ditunjukkan pada Gambar 4(c) terdapat serapan dibilangan gelombang 459 cm⁻¹, 806 cm⁻¹, 1625 cm⁻¹, dan 3414 cm⁻¹. Pada spektra tersebut muncul puncak serapan baru pada bilangan gelombang 663 cm⁻¹ menunjukkan vibrasi ikatan Bi-O akibat dari penambahan Bi₂O₃ pada TiO₂ [14]. Dengan adanya serapan tersebut mengidentifikasikan bahwa terbentuk oksida bismut [23]. Vibrasi Ti-O pada spektra 1% Cu(II)-TiO₂/Bi₂O₃ juga mengalami pergeseran ke bilangan gelombang yang semakin kecil yaitu 459 cm⁻¹ yang menandakan semakin sensif terhadap energi yang lebih kecil dibandingkan vibrasi Ti-O pada spektra TiO2. Hasil analisis tersebut didukung data DRS UV-VIS yang ditunjukkan sebelumnya bahwa terjadi penurunan energi celah pita yang disebabkan tergabungnya kation Cu2+ kedalam kisi TiO2 dan tergabungnya material semikonduktor Bi₂O₃.

Diffuse Reflectance Spectroscopy UV-Vis (DRS UV-Vis)

Karakterisasi DRS UV-Vis merupakan instrumen yang digunakan untuk mengetahui energi band gap TiO₂, Cu(II)-TiO₂ dan Cu(II)-TiO₂/Bi₂O₃. Analisis DRS UV-Vis dilakukan terhadap sampel Cu(II)-TiO₂ dengan variasi konsentrasi Cu²⁺ 0,075%; 0,25% dan 1% (b/v) yang dilakukan terlebih dahulu untuk menentukan konsentrasi optimum dari variasi dopan Cu(II) berdasarkan nilai *band gap* yang paling kecil. Penentuan konsentrasi optimum dari variasi dopan Cu(II) juga didukung dengan data uji aktivitas fotokatalisis degradasi rhodamin B berdasarkan % degradasi tertinggi.

Energi band gap diperoleh dengan mengubah besaran %R kedalam fungsi Kubelka-Munk. Energi band gap yang diperoleh dari kurva *tauch plot* yakni hubungan $(F(R)hv)^{1/2}$ terhadap energi (eV). Nilai energi band gap adalah besarnya Eg pada saat $(F(R)hv)^{1/2} = 0$, yang diperoleh dari perpotongan garis lurus yang ditarik memotong sumbu energi (eV) [23], [25]. Hasil energi band gap dan daerah serapan panjang gelombang dari fotokatalis Cu(II)-TiO₂ dirangkum pada Tabel 1.

Tabel 1. Perbandingan energi band gap dan serapan panjang gelombang

Material	Energi band gap	Panjang
	(eV)	gelombang (nm)
0,075% Cu(II)-TiO ₂	2,89	428
0,25% Cu(II)-TiO ₂	2,72	454
1% Cu(II)-TiO ₂	2,54	487
TiO_2	3,15	392
Cu(II)-TiO ₂ /Bi ₂ O ₃	2,18	567

Berdasarkan Tabel 1. Penambahan dopan kation Cu(II) menyebabkan terjadinya penurunan energi band gap akibat Cu²⁺ yang masuk ke dalam kisi TiO₂. Penurunan energi celah pita terus terjadi seiring bertambahnya konsentrasi dopan Cu²⁺. Hal ini Cu^{2^+} dikarenakan semakin banyakya vang mensubsitusi kation Ti⁴⁺ ke dalam struktur TiO₂ yang mengakibatkan semakin banyak cacat kristal pada struktur TiO₂ [4]. Cacat kristal akan memberikan keuntungan pada katalis karena mampu meningkatkan aktivitas fotokatalis [10]. Berdasarkan data yang diperoleh maka dapat disimpulkan bahwa dopan Cu(II) 1% merupakan konsentrasi optimum dalam penurunan energi celah pita sehingga akan lebih efektif dalam penyerapan sinar tampak. Hal ini sejalan dengan penelitian [9][26] yang menyatakan konsentrasi dopan 1% Cu(II) terhadap TiO₂ merupakan konsentrasi yang optimum. Optimumnya fotokatalis dari 1% Cu(II)-TiO₂ dilanjutkan dengan penambahkan material Bi₂O₃ untuk dilakukan karakterisasi DRS UV-Vis dan dilakukan perbandingan terhadap TiO₂ yang dapat dilihat pada Gambar 3.

Gambar 3. Energi band gap (a) TiO₂, (b) 1% Cu(II)-TiO₂ (c), 1% Cu(II)-TiO₂/Bi₂O₃

Berdasarkan Gambar 3. TiO₂ memiliki energi celah pita 3,15 eV. Hal tersebut sesuai dengan [3] yang menyatakan energi celah pita dengan fase anatase sebesar ±3,2 eV. Modifikasi sintesis 1% Cu(II)-TiO₂/Bi₂O₃ cenderung menurunkan energi celah pita vaitu 2,18 eV. Hal ini didukung oleh penelitian [10] menyatakan bahwa fotokatalis vang Cu(II)-TiO₂/Bi₂O₃ dengan metode sol gel menyebabkan penurunan energi celah pita sebesar <2,8 eV. Pembuatan fotokatalis Cu(II)-TiO₂ yang ditambahkan meningkatkan efektif untuk material Bi_2O_3 kemampuan transfer elektron sehingga mampu meminimalisir rekombinasi dari pasangan elektron dan hole yang dapat menyebabkan wilayah serapan semakin memanjang ke arah sinar tampak [27]. Semikonduktor TiO₂memiliki panjang gelombang 392 nm, sedangkan TiO2 yang telah dimodifikasi menjadi Cu(II)-doped TiO₂/Bi₂O₃ menyebabkan daerah serapannya melebar ke daerah sinar tampak 567 nm.

X-Ray Diffraction (XRD)

Berdasarkan Gambar 4(a) pola difaktogram TiO_2 memiliki tiga puncak intensitas tertingi pada kisaran sudut 20 25°, 37°, dan 48°. Tiga puncak tertinggi yang dihasilkan mengindikasikan bahwa TiO_2 yang diperoleh memiliki kristal fase *anatase*, telah sesuai dengan JCPDS No. 21- 1272.

Gambar 4. Difaktogram (a) TiO₂, (b) 1% Cu(II)-TiO₂, (c) 1% Cu(II)-TiO₂/Bi₂O₃

Pola difaktogram sampel 1% Cu(II)-TiO₂ pada Gambar 4(b), adanya penambahan dopan Cu(II) terhadap TiO₂ tidak memberikan perubahan terhadap fasa kristal TiO₂. Akan tetapi terjadi penurunan intensitas puncak TiO₂ yang disebabkan Cu(II) telah masuk ke struktur kristal TiO₂. Perubahan intensitas tersebut karena perbedaan nilai jari-jari ion pada Ti⁴⁺ (0,68 Å) dan Cu²⁺ (0,73 Å). Jari-jari ion Cu²⁺ yang lebih besar menyebabkan terjadi distori kisi sehingga terjadi perbedaan intensitas dan lebar puncak setelah dilakukan doping. Selain itu tidak menunjukkan munculnya puncak difraksi lain atau gangguan akibat dari doping Cu(II). Hal ini didukung oleh penelitian oleh [19], [29] menyatakan bahwa penambahan dopan logam Cu(II) tidak mengubah struktur fasa kristal TiO₂ dan tidak menimbulkan adanya puncak difraksi lain. Hal ini dikarenakan jari-jari ionik yang dimiliki kation Ti⁴⁺ (0,68 Å) dan Cu²⁺ (0,73 Å) yang tidak jauh berbeda, sehingga ion Cu²⁺ dapat

Hasil difaktogram sampel pada 1% Cu(II)-TiO₂/Bi₂O₃ menunjukkan kemiripan dengan pola difraksi TiO₂ yang dapat dilihat pada puncak yang teramati pada sudut 20 25,2834°, 38,0185°, 48,2224°. Selain itu tidak ada puncak difraksi Bi₂O₃ yang terlihat pada pola difaktogram 1% Cu(II)-doped TiO₂/Bi₂O₃. Hal ini sejalan dengan penelitian [9], [17], dan [29] yang menyatakan kemiripan menunjukkan bahwa Bi₂O₃ pada jumlah yang rendah dibawah 2% tidak memberikan perubahan fasa kristal TiO2 dan menunjukkan kristal fasa anatase. Selain itu [9] menyatakan bahwa tidak munculnya puncak difraksi Bi₂O₃ dikarenakan dispersi yang sempurna dari partikel Bi2O3 pada permukaan TiO2. Akan tetapi terjadi penurunan intensitas yang disebabkan Bi2O3 telah tercampur pada Cu(II)-TiO₂ yang dapat mengindikasikan bahwa Bi₂O₃ telah berhasil bergabung dengan Cu(II)-TiO₂ [2], [29], dan [30]. Hasil perhitungan ukuran kristal TiO2, 1% Cu(II)-doped TiO₂ dan 1% Cu(II)-doped TiO₂/Bi₂O₃ vang diperoleh berturut-turut sebesar 38,687 nm, 28,155 nm, 24,236 nm. Hal ini sejalan dengan penelitian [20] yang menyatakan bahwa perubahan ukuran kristal (D) dari Cu(II)-TiO₂ dan Cu(II)-TiO₂-Bi₂O₃ memiliki partikel yang lebih kecil dibandingkan dengan TiO₂. Penurunan ukuran kristal dapat meningkatkan luas permukaan sehingga menghasilkan aktivitas fotokatalitik yang tinggi [15].

Uji Aktivitas Fotokatalis TiO₂, Cu(II)-TiO₂, Cu(II)-TiO₂, Cu(II)-TiO₂/Bi₂O₃

Uji aktivitas dilakukan untuk mengetahui kemampuan fotokatalis TiO₂, Cu(II)-TiO₂, dan Cu(II)-TiO₂/Bi₂O₃ dalam mendegradasi rhodamin B

dengan bantuan sinar tampak. Fotokatalisis TiO₂, Cu(II)-TiO₂, dan Cu(II)-TiO₂/Bi₂O₃ dilakukan uji aktivitas degradasi rhodamin B dengan konsentrasi 10 ppm dalam 30 mL akuades dengan massa katalis 0,03 gram. Fotokatalisis dilakukan di dalam reaktor uji yang berisi lampu LED 20 watt. Fotokatalisis dilakukan dengan rentang waku 0, 20, 40, 60, 80, 100, 120, 140, 160, 180 menit, setelah itu dilakukan pengukuran menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum 554 nm untuk mengetahui konsentrasi rhodamin perubahan В setelah fotokatalisis. Hasil perubahan konsentrasi tersebut digunakan untuk menghitung efisiensi degradasi fotokatalisis dari katalis. Uji aktivitas fotokatalis diawali dengan fotokalis Cu(II)-TiO2 dengan variasi dopan Cu²⁺ vaitu 0,075%; 0,25% dan 1% yang hasil persentase nya dapat dilihat pada Gambar 5.

Gambar 5. Aktivitas degradasi fotokatalis Cu(II)-TiO₂ terhadap Rhodamin B

Hasil persentase degradasi yang ditunjukkan Gambar 5 menunjukkan grafik hubungan antara waktu (t) dan % degradasi rhodamin B. Aktivitas fotokatalis terhadap degradasi rhodamin B dengan bantuan sinar tampak (visible) selama 180 menit menunjukkan bahwa 1% Cu(II)-TiO2 memiliki aktivitas fotokatalis yang lebih baik dibandingkan 0,075% Cu(II)-TiO2 dan 0,25% Cu(II)-TiO2. Hal tersebut dapat dilihat dari %D fotokatalis 0,075% Cu(II)-TiO₂, 0,25% Cu(II)-TiO₂, 1% Cu(II)-TiO₂ secara berturut-turut adalah 38,63%, 45,04%, dan 59,90%. Hal ini berbanding lurus dengan nilai band gap yang diperoleh masing-masing katalis. Fotokatalis 1% Cu(II)-TiO₂ memiliki band gap yang lebih kecil sebesar 2,54 eV setara dengan panjang gelombang nya 487 nm yang artinya semakin aktif bekerja pada wilayah sinar tampak. Konsentrasi 1% memiliki aktivitas fotokatalisis yang optimum sehingga dapat dilanjutkan

dengan penambahan material semikonduktor Bi₂O₃ untuk uji aktivitas dan dilakukan perbandingan terhadap fotokatalis TiO₂ yang dapat dilihat pada Gambar 6.

Gambar 6. Aktivitas degradasi fotokatalisis TiO₂ dan 1% Cu(II)-TiO₂/Bi₂O₃

Gambar 6. menunjukkan perbandingan % degradasi fotokatalis TiO₂ dan 1% Cu(II)-TiO₂/Bi₂O₃. Fotokatalis TiO₂ menunjukkan persentase degradasi rhodamin B sebesar 26,06% yang lebih rendah dibandingkan material Cu(II)-TiO₂/Bi₂O₃. Hal ini dikarenakan TiO2 memiliki nilai band gap yang besar yaitu 3,15 eV yang setara dengan panjang gelombang sinar UV sehingga material ini kurang aktif dibawah sinar tampak [25]. Berbeda halnya dengan material Cu(II)-TiO₂/Bi₂O₃ yang menunjukkan % degradasi tertinggi sebesar 85,85%. Hal ini karena material Cu(II)-TiO₂/Bi₂O₃ memiliki band gap yang kecil sebesar 2,18 eV yang dapat merespon atau menyerap sinar tampak (visible) serta dapat meningkatkan luas permukaan TiO₂ sebagai fotokatalis sehingga semakin banyak polutan organik yang terdegradasi oleh fotokatalis [31], [32].

Proses fotokatalis terjadi ketika Cu(II)-TiO₂/Bi₂O₃ menyerap energi foton yang dihasilkan dari lampu LED. Hal ini akan menyebabkan elektron pada pita valensi TiO₂ tereksitasi dan meninggalkan *photohole*. Spesi *photohole* (h⁺) yang terbentuk menjadi sangat reaktif dan mampu mengoksidasi H₂O menghasilkan radikal hidroksil (•OH) [3]. Radikal hidroksil (•OH) yang terbentuk berperan sebagai oksidator kuat yang dapat memecahkan molekul-molekul yang berbahaya pada rhodamin B menjadi molekul-molekul yang ramah lingkungan (sederhana) dan tidak berbahaya seperti CO₂ dan H₂O [3]

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan, fotokatalis Cu(II)-TiO₂ dan Cu(II)-TiO₂/Bi₂O₃ telah berhasil disintesis menggunakan metode sol gel. Karakteristik DRS UV-Vis menunjukkan nilai *band gap* optimum pada fotokatalis Cu(II)-TiO₂ dengan konsentrasi dopan Cu(II) 1% sebesar 2,54 eV. Adanya penambahan material Bi₂O₃ terhadap TiO₂ yang terdoping 1% Cu(II), nilai *band gap* yang diperoleh cenderung semakin menurun sebesar 2,18 eV yang menyebabkan pergeseran serapan ke arah sinar tampak (λ = 567 nm). Hasil uji aktivitas selama 180 menit menunjukkan fotokatalis Cu(II)-TiO₂/Bi₂O₃ mampu mendegradasi rhodamin B hingga 85,85%.

UCAPAN TERIMA KASIH

Penulis mengucapkan terimakasih kepada Dekan FMIPA Universitas Tanjungpura yang telah memfasilitasi penggunaan peralatan penelitian di laboratorium kimia anorganik fisik.

DAFTAR PUSTAKA

- S. Chen, L. Ma, Y. Du, W. Zhan. W, T. C. Zhang, and D. Du, "Highly efficient degradation of Rhodamine B by carbon nanotubes-activated persulfate," *Separation and Purification Technology*, vol. 256, pp. 117788, 2021.
- [2] Brinker and Scherer, "History of sol-gel science and technology," *Chem.Mater*, vol. 12, pp. 434-441, 1990.
- [3] A. L. Linsebigler, G. Lu, and J. T. Yates, "Photocatalysis on TiO₂ surfaces: Principles, mechanisms, and selected results," *Chem Rev*, vol. 95, no. 3, pp. 735-758, 1995.
- [4] J. V. Hernandez, S. M. A. G. Coste, F.C. Romo, and A. Kassiba, "Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO₂," *Journal of Alloys and Compounds*, 2017.
- [5] G. Colon, M. Maicu, Ms. Hidalgo, and J. Navio, "Cudoped TiO₂ systems with improved photocatalytic activity," *Appl. Catal*, vol. 67, pp. 41-51, 2006.
- [6] P. Pongwan, K. Wetchakun, S. Phanichphant, and N. Wetchakun, "Enhancement of visible-light photocatalytic activity of Cu-doped TiO₂ nanoparticles," *Res. Chem. Intermed*, vol. 42, pp. 2815-2830, 2016.
- [7] L. Yuande, X. Feng, W. Fumin, L. Shanxia, and Y. Xiaohong, "Synthesis, characterization, and activities of visible light-driven Bi₂O₃-TiO₂ composite

photocatalysts," *Journal of Alloys and Compounds*, vol. 498, pp. 179-184, 2010.

- [8] X. Dong, F. Zhang, C. Hua, C. Rong, X. Zhang, H. Ma, F. Shi, X. Zhang, C. Ma, and M. Xue, "Bi-Doped TiO₂ with remarkably enhanced 38 photocatalytic activity under simulated sunlight induced by increased hydrophilicity and light absorption ability," *Journal of Advanced Oxidation Technologies*, vol. 17, no.1, pp. 39-43, 2014.
- [9] V. Barahimi, M. Hamid, and A. T. Ramezab, 2019, "Cu doped TiO₂-Bi₂O₃ nanocomposite for degradation of azo sye in aqueous solution: process modeling and optimizaion using central composite design," *Journal of Environmental Chemical Engineering*, vol.7, 2019.
- [10] V. Barahimi, M. Z. Arjomand, R. Mohammed, and G. Masoud, 2020, "Syhnthesis, characterization, and evaluations of Cu-doped TiO₂/Bi₂O₃ nanocomposite for direct red 16 azo dye decolorization under visible light irradiation," *Desalination and Water Treatment*, vol. 202, pp. 450-461, 2020.
- [11] K. Amit, Y. Nishtha, B. Monica, K. M. Neeraj, C. Pratibha, and S. Rajeev, "Sol gel derived nanomaterials and it's application: Review," *Research Journal of Chemical Sciences*, vol. 5, no.12, pp. 98-105, 2015.
- [12] D. Fatmawati, A. B. Aritonang, and Nurlina, "Sintesis dan karakterisasi TiO₂-Kaolin menggunakan metode sol gel," *Jurnal Kimia Khatulistiwa*, vol. 8, no.2, pp. 15-21, 2019.
- [13] E. Pratiwi, H. Harlia, and A. B. Aritonang, "Sintesis TiO₂ terdoping Fe³⁺ untuk degradasi rhodamin B secara fotokatalisis dengan bantuan sinar tampak," *POSITRON*, vol. 10, no. 1, pp. 57-63, 2020.
- [14] Y. F. Liu, F. Xin, S. Wang, and X. Luo, Yin, "Synthesis, characterization, and activities of visible light-driven Bi₂O₃-TiO₂ composite photocatalysts," *J. Alloys. Compd*, 2010.
- [15] M. Natsir, M. Mauliyah, A. H. Watoni, J. Arif, A. Sari, L. O. A. Salim, S. Sarjuna, I. Irwan, and J. Nurdin, "Syhnthesis and characterization of Cu-doped TiO₂ (Cu/TiO₂) nanoparticle as antifungal phytophthira palmivora," *Journal of Physic*, Conference Series, 2021.
- [16] P. A. K. Reddy, B. Srinivas, P. Kala, V. D. Kumari, and M. Subrahmanyam, "Preparation and characterization of Bi-Doped TiO₂ and its solar photocatalytic actuvity for the degradation of isoproturon herbicide," *Materials Research Bulletin*, vol. 46, pp. 1766-1771, 2011.
- [17] S. Shamaila, F. Sajjad, and J. Chen, Zhang, "Study on highly visible light active Bi₂O₃ loaded ordered mesoporous titania," *Appl. Catal. B*, vol. 94, pp. 272-280, 2010.
- [18] A. B. Anthoni, K. K. Yuni, and G. Jarnuzi, "Modification of TiO₂ nanotube arrays with N doping and ag decorating for enhanced visible light

photoelectrocatalytic degradation of methylene blue" International Journal on Advanced Science Engineering Information Technology, vol. 8, pp. 234-241, 2018.

- [19] P. Jeanina, C. Pandele, A. Iriana, R. Andriana, A. Nicoleta, T. Valentin, P. Luminita, M. S. Imre, P. György, and Z. Maria, "Thermal behavior of cudoped TiO₂ gels synthesized by the sol-gel method," *Rev.Roum.Chim*, vol. 66, no. 3, pp. 219-229, 2021.
- [20] V. Pratibha, Bakre, dan S. G. Tilve, "Irect access to highly crystlline mesoporous nano TiO₂ using sterically bulky organic acid templates," *J. of physics and Chemistry of Solids*, vol. 116, pp. 234-240, 2018.
- [21] S. Miao, L. Lijun, L. D. Jianhui, X. Lihong, L. Junhong, Y. Wenrong, W. Hongbin, and S. Li, "The comparative study of two kinds of β-Bi₂O₃/TiO₂ Binary Composite and their Removal of 17aethynylestradio," *Environmental Science and Pollution Research*, 2019.
- [22] P. G. B. Beatriz, V.R. Ximena, and D. U. Carlos, "Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO₂ films," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 34, 2018.
- [23] A. Yayuk, A. Darul, S. W. Didik, W. Hendri, B. Rata, and O. Takashi, "Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method," *International Journal of Technology*, vol. 11, no. 1, pp. 26-30, 2020.
- [24] M. K. Abdullah, "Review: karakterisasi nanomaterial," Jurnal Nanosains dan Teknologi, vol. 2, no. 1, pp. 1-8, 2008.
- [25] S. Hary, R. Pinta, and K. W. N. Sharly, "Degradasi methylene blue menggunakan katalis ZnO-PEG dengan metode fotosonolisis," *Eksakta*, vol. 18, no. 2, 2017.
- [26] H. Wang, Y. Y. Wu, J. Wang, X. Li, Q. Jin, and Zhang, "Construction of novel Z-scheme nitrogen-doped carbon dots/TiO₂ nanosheet photocatalysts for broad spectrum-driven diclofenac degradation: mechanism insight, productsand effects of natural water matrices," *Chem. Eng. J*, 2019.
- [27] H. Rahmat, S. Anggi, and F. Murni, "Material MOFs (Metal Organic Frameworks) dalam aplikasi fotokatalisis: mini review," *Indonesian Journal of Chemical Analysis (IJCA)*, 2022.
- [28] O. A. Osin, Y. Tianyu, C. Xiaoming, J. Yue, P. X. Guotao, R. L. Cheng, Q. Yao, and L. Sijie, "Photocatalytic degradation of 4-Nitrophenol by C, N, TiO₂: degradation efficiency vs. embryonic toxicity of the resulting," 2018.
- [29] M. Malligavathy, S. Iyyapushpam, S. Nishanthi, and D. P. Padiyan, "Remarkable catalytic activity of

Bi₂O₃/TiO₂ nanocomposite prepared by hydrothermal method for the degradation of methylene oranye," *J. Nanoparticle Res.* vol. 19, p. 144. 2017.

- [30] D. Realpe, I. Núñez, M. Carbal, and Acevedo, "Sensitization of TiO₂ photoelectrodes using copper phthalocyanine for hydrogen production," *International Journal of Engineering and Technology*, vol. 7, no. 4, pp. 1189-1193, 2015
- [31] Y. A. Prisca, R. Didier, and L. G. Droh, "Facile synthesis of TiO₂/Bi₂O₃ heterojunctions for the photocatalytic degradation of water contaminants," *J. Mater. Environ. Sci*, vol. 9, no. 8, 2018.
- [32] E. N. Rafiee, A. A. Zinatizadeh, and H. Zanganeh, "A new visible driven nanocomposite including Tisubstituted polyoxometalate/TiO₂: Synthesis, characterization, photodegradation of azo dye process optimization by RSM and specific removal rate calculations, "J. Mater. Sci. Mater. Electron, 2018.